

Consumer Intention Towards Electric Vehicle: Effects of Environmental Corporate Social Responsibility and Green Brand

Le Thi My Duyen¹, Nguyen Van Hau^{2,*}

¹Branch of Automated Engineering Solution Vietnam JSC, Ho Chi Minh City, Vietnam

²HUTECH University, Vietnam

KEY WORDS

Affective commitment,
Electric vehicle,
Environmental corporate
social responsibility,
Green trust,
Purchase intention.

ABSTRACT

This research examines the impact of Environmental Corporate Social Responsibility (ECSR) on green purchase intention in Vietnam's emerging electric vehicle (EV) market. While global EV adoption is increasing, there is limited research focusing on developing markets, particularly in Vietnam. This study aims to address this gap by exploring how ECSR influences consumer trust, brand commitment, and purchase intentions within this context. The study adopts the Stimulus-Organism-Response (S-O-R) theory, using a quantitative survey approach. Data was collected from 302 participants, with key constructs - ECSR, green brand trust, affective brand commitment, and green purchase intentions - measured on a 7-point Likert scale. Partial least squares structural equation modeling (PLS-SEM) was used to test the hypotheses. The findings reveal that ECSR positively impacts both green trust and brand commitment, which subsequently enhance green purchase intentions. Additionally, trust and commitment play significant mediating roles in the relationship between ECSR and purchase intentions. This study contributes to the understanding of the socio-psychological mechanisms driving green consumerism in developing markets. Practically, it provides insights for EV manufacturers and policymakers to develop effective marketing and sustainability strategies, while also offering a foundation for future research on cultural and technological factors in the EV sector.

1. Introduction

The global transportation industry has experienced significant growth and has become an essential part of modern life (Liu et al., 2022). However, this rapid expansion has led to serious environmental challenges, especially in terms of transport emissions,

which are a major contributor to climate change. The International Energy Agency (IEA) reported that transport-related CO₂ emissions increased by more than 250 million tons in 2022, totaling 8 billion tons globally, marking a 3% increase from the previous year. This problem is particularly pronounced in low and middle-income countries such as Vietnam, where

*Corresponding author. Email: nv.hau@hutech.edu.vn

<https://doi.org/10.61602/jdi.2025.81.13>

Submitted: 8-Dec-2024; Revised: 1-Mar-2025; Accepted: 4-Mar-2025; Online first: 18-Apr-2025

ISSN (print): 1859-428X, ISSN (online): 2815-6234

motorbikes account for more than 90% of traffic. The preference for gasoline-powered motorbikes, due to their affordability and convenience, has led to a significant increase in air pollution.

The development of electric vehicles in Vietnam is taking place strongly in the context of increasing demand for environmental protection and pollution reduction. With rapid urbanization and air pollution in big cities such as Hanoi and Ho Chi Minh City, switching to electric vehicles has become an important solution to reduce emissions and protect public health. In response to these environmental challenges, the Vietnamese government has launched a number of initiatives aimed at reducing carbon emissions, including a commitment to achieve net zero emissions by 2050. A key component of this strategy is the promotion of electric vehicles as a sustainable alternative to traditional gasoline-powered motorbikes. As the global EV market expands, Vietnam is emerging as a potential contender in this field. In addition, the application of renewable energy in supplying electricity for electric vehicles further enhances environmental benefits, in line with the global sustainable development trend. Electric vehicles not only help reduce air pollution but also contribute to the goal of building a green, modern transportation system in Vietnam in the future.

This study seeks to explore the impact of ECSR on green vehicle purchase intention in the context of Vietnam's emerging electric vehicle market. Based on stakeholder theory, this study recognizes consumers as important stakeholders whose interests directly influence the success of businesses (Freeman, 1984). The Stimulus-Organism-Response (S-O-R) model will also be used to investigate how ECSR initiatives shape internal psychological processes, such as green trust and green brand performance commitment, which in turn influence consumer purchase behavior.

2. Theoretical background

2.1. *Stimulus-Organism-Response (SOR) Theory*

Stimulus-Organism-Response (S-O-R) theory, which emerged from the intersection of psychology and environmental studies, hypothesizes that external dimensions (S) from the environment influence an individual's internal state (O), which in turn influences their behavior or response (R) (Yin et al., 2021). In this framework, "attitude dimensions"

refer to environmental factors, such as contextual strategies, organizational policies, or corporate social responsibility (CSR) initiatives, that play an important role in shaping consumers' conceptual decision-making processes. "Body" represents consumers' internal states, including their perceptions, attitudes, and emotional evaluations triggered by these external dimensions (Yin et al., 2021). Finally, "response" suggests the action outcomes or outcomes, given the constraints such as purchase behavior or attitudes toward a commercial effect.

S-O-R theory is particularly well suited to examining how green consumer behavior occurs, as it leverages environmental stimuli, such as corporate social responsibility activities, to shape and reflect individuals' cognitive and emotional responses, which ultimately reflect actions such as green shopping (Yin et al., 2021). This perspective has been applied in recent research to explore eco-friendly behaviors like the purchase decision of Electric Vehicles, which are influenced not only by environmental concerns but also by consumers' psychological states, which is consistent with the main tenets of the S-O-R model.

2.2. *Environmental corporate social responsibility (ECSR)*

Environmental corporate social responsibility (ECSR) plays a pivotal role within broader corporate social responsibility initiatives, guiding companies in their efforts to contribute to environmental sustainability and achieve the sustainable development goals. ECSR refers to the proactive steps organizations take to integrate environmental considerations into their operations and interactions with stakeholders, demonstrating their commitment to reducing their environmental footprint (Chang et al., 2020). This includes taking steps to reduce the negative impacts of business activities – such as energy consumption, water use, and waste generation – through sustainable practices that prioritize environmental protection (Latif et al., 2022). In this study, ECSR is conceptualized as an external stimulus that represents the efforts of electric vehicle companies to align their business operations with environmental sustainability goals (Vu et al., 2022). By adopting ECSR strategies, NEV companies not only reduce their ecological impact but also improve product quality and performance, reinforcing their commitment to both environmental and business excellence (Latif et al., 2022).

2.3. *Green Trust*

In today's environmentally conscious marketplace, trust transcends mere transactions. It's the currency consumers use to navigate a world brimming with sustainability claims. Green trust represents a consumer's unwavering belief in a brand or product's (goods or services) commitment to environmental responsibility. It's more than just competence; it's the conviction that a brand prioritizes integrity, capability (Chen & Chang, 2012) when it comes to the environment.

Green trust is not built on hollow promises. Consumers are wary of brands that overstate their ecological benefits or engage in misleading greenwashing tactics. Green trust flourishes when a brand demonstrates genuine credibility through its actions and fosters a sense of shared responsibility for the planet. Ultimately, green trust empowers consumers to make informed purchasing decisions, confident that their choices align with their values and contribute to a sustainable future.

2.4. *Affective commitment brand*

Affective commitment to a brand or product is considered a key factor in building and maintaining customer loyalty (Geyskens et al., 1996). According to Allen and Meyer (1990), commitment can be classified into three types: affective, normative, and continuance/calculation. Affective commitment refers to the emotional bond that a customer develops with a company, while continuance commitment is based on the perception that staying with the company is better due to the lack of better options. In contrast, normative commitment arises from a sense of obligation or responsibility to stay with the company. In this study, affective commitment is defined as the positive feelings that customers have toward a brand, the enjoyment they derive from the relationship, and the feeling of connection or attachment to the company (Geyskens et al., 1996).

2.5. *Green purchase intention*

People are getting better at choosing eco-friendly products, and that might make them more likely to go for sustainable options instead of regular ones when they shop. Green purchase intentions, which are formed by the information and perceived formulations

that consumers hold before making a purchase, play an important role in guiding this decision. When consumers perceive the environmental benefits of environmentally friendly products, these intentions often translate into actual green behavior, in which their choice types reflect a commitment to sustainability (Vu et al., 2022).

3. Hypotheses Development and Conceptual Framework

3.1. *ECSR and effective brand commitment*

Previous researchs have indicated that strong affective commitment arises when customers perceive CSR efforts as positively impacting environmental, social, and stakeholder interests. Singh et al. (2012) further assert that customers are more emotionally invested in brands that demonstrate ethical behavior and genuine concern for their stakeholders. Additional study by Hur et al. (2018) provide further evidence of the positive relationship between CSR practices and emotional attachment. Based on these insights, the current study proposes the following hypotheses:

H1. ECSR shapes affective brand commitment positively.

3.2. *ECSR and green brand trust*

Well-executed ECSR efforts build positive impressions by demonstrating a company's commitment to environmental and social responsibility. Liu et al. (2022) suggest that the values communicated through ECSR practices are key to developing consumer trust. Specifically, consumers are more likely to trust companies that align their actions with ethical and sustainable practices. Further argument that trust in a company's CSR initiatives positively affects consumers' perceptions of its products, while emphasize that meeting stakeholder expectations amplifies trust. Thus, we propose the following hypothesis:

H2. ECSR positively influences green trust.

3.3. *Green brand trust and green purchase intention*

Green trust is a key factor influencing consumers' intention to purchase eco-friendly products (Chen & Chang, 2012). When consumers trust a company's

environmental claims, they are more likely to choose its products. This is consistent with research showing that brand trust enhances brand preference and purchase likelihood. Trust also reduces perceived risks, making transactions more favorable and boosting purchase intentions. Thus, we propose the following hypothesis:

H3. Green trust positively influences green purchase intention.

3.4. Affective brand commitment and green purchase intention

Affective commitment refers to the emotional attachment consumers feel toward a brand, including feelings of affection or loyalty. It plays a critical role in predicting future consumer behavior, often more so than cognitive trust (Hur et al., 2018). When consumers develop emotional bonds with a brand, they are more likely to feel a sense of obligation and act in ways that support the brand, including making purchases. Research has shown a positive link between affective brand commitment and purchase intention, particularly in sectors like aviation. However, the role of affective commitment in driving purchase intentions within the electric vehicle market remains underexplored. As highlighted by Zhang et al. (2024), there is a need for further research into how consumers' emotional attachment to brands can influence environmentally conscious purchase decisions. Based on this, we propose the following hypothesis:

H4. Affective brand commitment positively influences green purchase intention.

3.5. ECSR and green purchase intention

In response to escalating environmental challenges and evolving consumer preferences, organizations are increasingly adopting ECSR as a key strategic initiative. By implementing ECSR practices - such as minimizing carbon emissions, supporting renewable energy, and advancing sustainable business operations—companies not only contribute to the health of the planet but also strengthen consumer trust and loyalty, particularly among eco-conscious buyers (Latif et al., 2022). In today's climate-conscious market, consumers are more inclined to support brands that demonstrate a genuine commitment to sustainability, even if it entails paying a premium for environmentally friendly products. Research has shown that ECSR efforts significantly influence consumer behavior by shaping their green purchase intentions, which often translate into actual pro-environmental purchasing decisions (Vu et al., 2022). This aligns with stakeholder theory, which asserts that companies can build stronger, more sustainable relationships with their consumers by aligning business practices with the values and expectations of key stakeholders. As consumers become more environmentally aware, their increased demand for sustainable products serves as a powerful driver for businesses to embed sustainability into their core strategies. Consequently, we hypothesize that:

H5. ECSR shapes green purchase intention positively.

3.6. Research framework

Based on the theories and hypotheses stated above, the author proposes a research model as shown below:

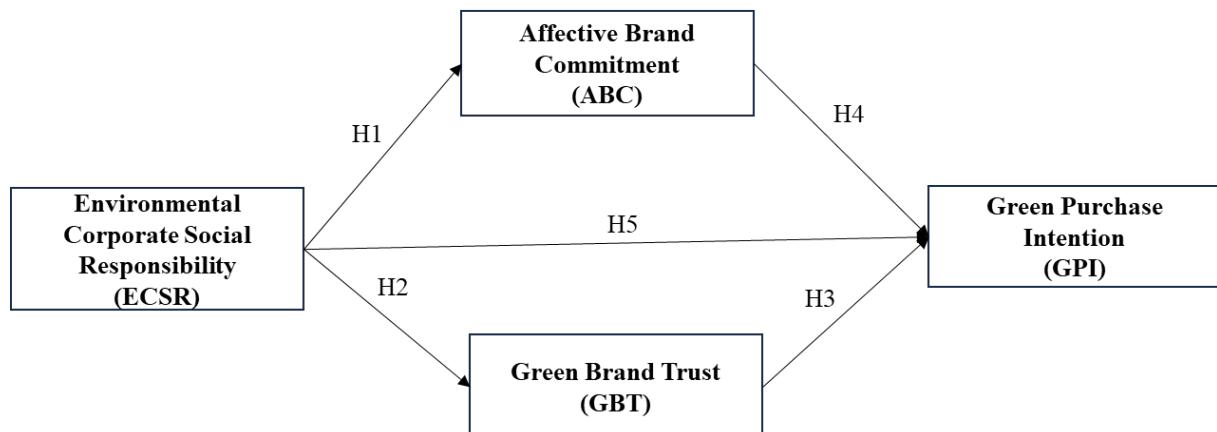


Figure 1. Conceptual framework

4. Methodology

4.1. Sampling and data collection

Data were collected through an online survey, with respondents coming from multiple locations. Survey participants were recruited through non-probability convenience sampling, a method that has been used by previous researchers. To screen respondents, we used two screening questions to confirm: (a) respondents' interest in environmental issues and electric vehicles, and (b) respondents were 18 years of age or older.

The questionnaire was used to collect data mainly in Ho Chi Minh City, but thanks to email and social media platforms, the survey was extended to many people living in other areas of the country. The online surveys were conducted via email and social media platforms such as LinkedIn, Facebook, Zalo and Viber, especially in groups specializing in electric vehicles and the environment. The questionnaire was sent to 400 survey participants, however, only 302 questionnaires were fully completed. There were approximately 98 invitees who were not interested in electric vehicles and were therefore excluded to answer the next survey questions.

This sample size exceeds the minimum sample size requirement of 150 according to Hair et al., (2014) for a research model with four constructs: ECSR, green brand trust, affective brand commitment, green purchase intention.

4.2. Measurement scale

All constructs in the study were measured using a 7-point Likert scale, ranging from "Strongly disagree" (1) to "Strongly agree" (7). Specifically:

Environmental corporate social responsibility (ECSR): Four scale items were adapted from the studies of Yin et al. (2021), for example: "Companies engage in activities that promote and improve the environment."

Green brand trust: Five scale items were developed from the study of Chen and Chang (2012), for example: "The environmental reputation of this product is trustworthy."

Affective brand commitment: Three scale items were adopted from Allen and Meyer (1990), for example: "I expect to buy this product in the future because of its environmental performance."

Green purchase intention: Three scale items were

developed based on the study of Zhang et al. (2024), for example, "I would buy this product for environmental reasons."

The questionnaire underwent pre-testing with two representatives from an electric vehicle manufacturer and two graduate students. They provided comments on several aspects of the questionnaire, including item comprehensibility, wording, ambiguity, and readability (Hair et al., 2014). The questionnaire was then piloted with 40 randomly selected participants to ensure that the questions were easy to understand and reflected their intended meaning. Once finalized, the questionnaire was ready for data collection. In addition, the questionnaire was initially designed in English and then translated into Vietnamese to ensure its usability and accessibility to Vietnamese respondents. The translation process was carefully conducted to ensure semantic accuracy and appropriateness, making the questions understandable and clear to the respondents. Once completed, the questionnaire was distributed online to collect data from research subjects in Vietnamese.

5. Results

Following the guidelines outlined in the literature on PLS-SEM, we employed a two-step procedure to assess the data and test the hypothesized relationships. In the initial phase, we assessed the measurement model to check reliability and validity. In the second phase, the structural model was analyzed to examine the path coefficients and test the hypotheses.

5.1. Demographic analysis

The demographic in Table 1 provides a comprehensive overview of the participants in the study, highlighting key characteristics such as gender, age, income, and education level.

Gender: The sample consists of 54.64% males (165 participants) and 45.36% females (137 participants), indicating a slightly higher proportion of male respondents. This distribution is relatively balanced but reflects a small gender gap.

Age: The participants are spread across four age groups. The largest group is those aged 18-25 years old, making up 37.09% (112 participants), followed by those aged 26-35 years (26.82%, 81 participants). The remaining participants are divided between the 36-45 years (25.83%, 78 participants) and >45 years

Table 1. Demographic of participants

	Frequency	Percent	Demographic	Frequency	Percent
Age					
	165	54.64	18-25 years old	112	37.09
	137	45.36	26-35 years old	81	26.82
Total	302	100	36-45 years old	78	25.83
			>45 years old	31	10.26
			Total	302	100
Demographic					
Income (million VND/month)					
Gender	11	3.64	<10	91	30.13
Male	16	5.3	>10 - 20	104	34.44
Female	191	63.25	>20 - 30	51	16.89
Postgraduate	84	27.81	>30	56	18.54
Total	302	100	Total	302	100

(10.26%, 31 participants) age groups, showing a predominance of younger adults in the sample.

Education: The majority of participants have a university degree (63.25%, 191 participants), followed by those with postgraduate education (27.81%, 84 participants). A small portion of the sample has vocational/college (5.3%, 16 participants) or high school education (3.64%, 11 participants).

Income: The income distribution shows that most respondents earn between 10-20 million VND/month (34.44%, 104 participants). The second largest group is those earning less than 10 million VND/month (30.13%, 91 participants). Fewer participants fall into the higher income brackets, with 16.89% earning between 20-30 million VND and 18.54% earning more than 30 million VND.

Overall, the result indicates a young, educated, and moderately affluent sample, which is typical for studies conducted in developing markets, especially regarding the adoption of emerging technologies like electric vehicles. The demographic diversity provides a broad perspective for understanding the factors influencing green purchase intentions in this context.

Assessment of measurement model

To assess inter-item reliability, we initially examined the factor loadings, setting a threshold of 0.60, as recommended by Hair et al. (2014). Next, we evaluated convergent validity by calculating the average variance extracted (AVE), adhering to the recommended threshold of 0.50. All values exceeded the 0.70 cutoff suggested by Fornell and Larcker (1981). The detailed results of the measurement model are presented in Table 2.

Table 2 shows that all constructs in the model ECSR, green brand trust, affective brand commitment, and green purchase intention - demonstrate strong reliability and validity. The outer loadings for all items exceed the 0.7 threshold, indicating good individual item reliability. Cronbach's alpha values are well above the 0.7 threshold for all constructs, confirming excellent internal consistency, with values ranging from 0.888 for ABC to 0.956 for GBT. The composite reliability scores also reflect strong consistency, with all values above 0.7, indicating that the constructs are measured reliably. Additionally, the average variance extracted (AVE) for each construct is above 0.5, confirming good convergent validity. Overall, the constructs exhibit robust measurement properties, demonstrating that the model has both high reliability and validity.

5.3. Discriminant validity

This study applied the heterotrait-monotrait ratio of correlations (HTMT) method to assess discriminant validity.

Table 3 presents the HTMT ratios and factor loadings for the constructs ABC, ECSR, GBT, and GPI. The HTMT values are used to assess discriminant validity, with values below 0.90 generally indicating that the constructs are sufficiently distinct from one another. The HTMT value between ECSR and ABC is 0.663, which suggests a moderate relationship between these two constructs, yet still within the acceptable range for discriminant validity. For GBT, the HTMT values with ECSR (0.898) and GPI (0.754)

Table 2. Reliability and validity

Variable and item	Outer loading	Cronbach's Alpha	Composite reliability	Average variance extracted
Environmental Corporate Social Responsibility (ECSR)		0.907	0.910	0.783
ECSR1	0.859			
ECSR2	0.916			
ECSR3	0.902			
ECSR4	0.860			
Green Brand Trust (GBT)		0.955	0.956	0.848
GBT1	0.905			
GBT2	0.908			
GBT3	0.950			
GBT4	0.922			
GBT5	0.919			
Affective Brand Commitment (ABC)		0.883	0.888	0.810
ABC1	0.892			
ABC2	0.895			
ABC3	0.913			
Green Purchase Intention (GPI)		0.926	0.932	0.872
GPI1	0.911			0.911
GPI2	0.947			0.947
GPI3	0.942			0.942

Table 3. HTMT and loadings

	ABC	ECSR	GBT	GPI
ABC				
ECSR	0.663			
GBT	0.898	0.754		
GPI	0.827	0.659	0.813	

are notably high, but remain below the 0.90 threshold, indicating that while these constructs are strongly correlated, they still maintain adequate discriminant validity. Similarly, the HTMT value between GPI and ECSR is 0.827, reflecting a moderate to strong correlation, yet without breaching the 0.90 threshold for discriminant validity. Notably, the HTMT values for ABC in relation to the other constructs are not included in the table, which may suggest either the absence of direct comparisons or the exclusion of this construct from the HTMT analysis. Overall, the HTMT values suggest that discriminant validity is preserved, as all values remain below the critical threshold of 0.90. Further examination of the individual factor loadings would provide additional insights into the strength of the relationships between the constructs and the overall quality of the measurement model.

Based on the correlation matrix shown in Table 3, we can assess the discriminant validity of the constructs in the model. The correlation coefficients between the constructs do not exceed 0.85, indicating that the constructs are adequately distinct from one another. Specifically, ABC shows low correlations with other constructs (0.599 with ECSR, 0.827 with GBT, and 0.753 with GPI), demonstrating that ABC is well differentiated from the others. Similarly, ECSR, with correlation coefficients ranging from 0.599 to 0.704 with other constructs, also exhibits good discriminant validity. Although GBT and GPI have higher correlation values with the other constructs, these values are still below the 0.85 threshold, suggesting that discriminant validity is not compromised. Overall, based on this correlation matrix, the constructs in the model maintain good

Table 4. Discriminant validity

	ABC	ECSR	GBT	GPI
ABC	0.900			
ECSR	0.599	0.885		
GBT	0.827	0.704	0.921	
GPI	0.753	0.608	0.768	0.934

Table 5. Hypothesis testing

Hypothesis	Effect	β	STDEV	T-value	P values	Outcome
Direct effect						
H1	ECSR \rightarrow ABC	0.599	0.052	11.469	0.000	Supported
H2	ECSR \rightarrow GBT	0.704	0.052	13.479	0.000	Supported
H3	GBT \rightarrow GPI	0.378	0.093	4.083	0.000	Supported
H4	ABC \rightarrow GPI	0.366	0.082	4.471	0.000	Supported
H5	ECSR \rightarrow GPI	0.123	0.051	12.024	0.000	Supported
Indirect effect						
	ECSR \rightarrow ABC \rightarrow GPI	0.219	0.053	4.144	0.000	Supported
	ECSR \rightarrow GBT \rightarrow GPI	0.266	0.066	4.056	0.000	Supported

discriminant validity, with no issues of excessive overlap between them.

5.4. Assessment of structural model

The next step involved testing the structural model and assessing the significance of the path coefficients. Using Smart PLS software, we tested the proposed hypotheses through a bootstrapping technique with 5,000 subsamples. The results summarized in Table 4 show that all the hypothesized relationships were found to be statistically significant.

Table 5 presents the results of hypothesis testing, showing both direct and indirect effects along with their corresponding path coefficients (β), standard deviations (STDEV), t-values, p-values, and the outcome of each hypothesis. For the direct effects, all hypotheses are supported as all p-values are 0.000, indicating statistical significance. Specifically, the effect of ABC on PI is positive ($\beta = 0.366$), and the effect of ECSR on ABC ($\beta = 0.599$), GBT ($\beta = 0.704$), and GPI ($\beta = 0.123$) are all highly significant with t-values exceeding the critical threshold of 1.96. Similarly, the direct effect of GBT on GPI ($\beta = 0.378$) is also significant.

Regarding the indirect effects, both hypotheses are supported. The indirect effect of ECSR on GPI

through ABC ($\beta = 0.219$) and through GBT ($\beta = 0.266$) are both significant with t-values well above 1.96, indicating that ECSR influences GPI through both ABC and GBT. The results indicate strong and significant relationships between the constructs, confirming that all direct and indirect paths in the model are supported. These findings highlight the positive and significant influence of ECSR on ABC, GBT, and GPI, and the important mediating roles of ABC and GBT in the model.

6. Discussion and implications

6.1. Discussion

The study highlights the significant role of ECSR in shaping green purchase intentions within Vietnam's EV market. Findings reveal that ECSR initiatives serve as effective external stimuli, fostering green trust and affective brand commitment, which mediate the relationship between corporate sustainability efforts and consumer behavior. These insights align with prior research demonstrating the importance of trust and emotional connection in driving green consumption (Chen & Chang, 2012).

Furthermore, the study sheds light on the moderating role of consumer ambivalence,

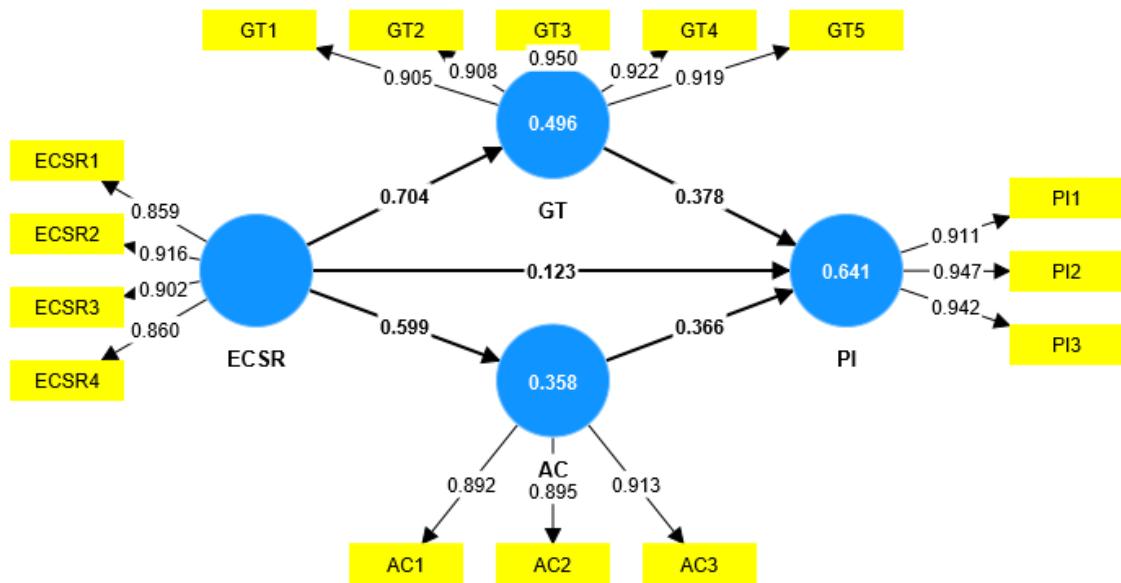


Figure 2. Scale accuracy analysis

emphasizing the complexities of green consumerism. Similar to findings by Xu et al. (2021), ambivalence presents challenges that businesses must address by providing clear and consistent messaging to overcome mixed consumer attitudes. The integration of socio-psychological factors into ECSR strategy highlights the need for companies to connect emotionally and cognitively with their target audience.

The results also underscore the alignment of ECSR with stakeholder theory (Freeman, 1984), as consumer perceptions of corporate sustainability significantly influence their purchasing decisions. These findings extend previous studies on stakeholder engagement and green marketing (Latif et al., 2022; Vu et al., 2022), offering a framework for businesses to leverage sustainability as a competitive advantage.

6.2. Theoretical implications

The application of the Stimulus-Organism-Response (S-O-R) framework provides empirical evidence for understanding the psychological mechanisms driving green purchase behavior. This study expands the literature by demonstrating the mediating roles of green trust and affective brand commitment in the context of developing markets. Additionally, the research integrates consumer ambivalence into the ECSR-purchase intention relationship, contributing to a nuanced understanding

of consumer behavior complexities in sustainability-driven markets.

6.3. Practical implications

For EV manufacturers, the findings emphasize the importance of implementing and communicating transparent, genuine ECSR efforts to build consumer trust and loyalty. Companies should focus on highlighting tangible environmental benefits through emotional marketing campaigns that resonate with shared values. Addressing consumer ambivalence through educational campaigns can further bridge gaps in understanding and decision-making.

Governments should prioritize infrastructure development, such as expanding EV charging networks, and incentivize ECSR initiatives through tax benefits or subsidies. These measures, coupled with public awareness campaigns about EV benefits, can reduce barriers to adoption and amplify the impact of corporate sustainability initiatives.

ECSR initiatives, when effectively implemented, can drive societal change by encouraging consumers to make environmentally conscious decisions. By fostering trust and emotional connections, businesses can influence individual behavior while contributing to global sustainability goals, such as carbon emission reduction.

7. Limitations and further research

The study provides valuable insights into the impact of ECSR on green purchase intentions in Vietnam's EV market, but several limitations must be noted. The sample is geographically and demographically limited, primarily consisting of younger, highly educated individuals, which may not capture the perspectives of other groups, such as those from rural areas or with lower educational levels. Additionally, the study's focus on Vietnam's developing EV market limits the generalizability of its findings to more mature markets with different cultural or policy contexts. The cross-sectional design also restricts the ability to assess changes in consumer behavior over time, and important factors like government incentives, EV charging infrastructure, and social media influences were not explored.

Future research should expand the sample to include diverse geographic and demographic groups, use a longitudinal design to track changes in attitudes, and explore macroeconomic and infrastructural factors, such as government policies and charging station availability. Qualitative methods could uncover deeper emotional and cognitive drivers of green purchase behavior, and cross-cultural studies could offer a broader understanding of EV adoption globally. Addressing these areas will strengthen the findings and inform more effective strategies for promoting sustainable consumer behavior.

REFERENCES

Allen, N. J., & Meyer, J. P. (1990). The measurement and antecedents of affective, continuance and normative commitment to the organization. *Journal of Occupational Psychology*, 63(1), 1-18.

Chen, Y. S., & Chang, C. H. (2012). Enhance green purchase intentions: The roles of green perceived value, green perceived risk, and green trust. *Management Decision*, 50(3), 502-520.

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. *Journal of Marketing Research*, 18(1), 39-50.

Freeman, I. RE 1984 Strategic Management: A Stakeholder Approach. *Boston. Pitman*.

Geyskens, I., Steenkamp, J. B. E., Scheer, L. K., & Kumar, N. (1996). The effects of trust and interdependence on relationship commitment: A trans-Atlantic study. *International Journal of Research in Marketing*, 13(4), 303-317.

Hair, J. F. Jr., Hult, G. T. M., Ringle, C. M., Sarstedt, M. (2014). *A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM)*. Sage Publications.

Hur, W. M., Kim, H., & Kim, H. K. (2018). Does customer engagement in corporate social responsibility initiatives lead to customer citizenship behaviour? The mediating roles of customer-company identification and affective commitment. *Corporate Social Responsibility and Environmental Management*, 25(6), 1258-1269.

Latif, B., Gunarathne, N., Gaskin, J., San Ong, T., & Ali, M. (2022). Environmental corporate social responsibility and pro-environmental behavior: The effect of green shared vision and personal ties. *Resources, Conservation and Recycling*, 186, 106572.

Liu, L., Liu, S., Wu, L., Zhu, J., & Shang, G. (2022). Forecasting the development trend of new energy vehicles in China by an optimized fractional discrete grey power model. *Journal of Cleaner Production*, 372, 133708.

Singh, J. J., Iglesias, O., & Batista-Foguet, J. M. (2012). Does having an ethical brand matter? The influence of consumer perceived ethicality on trust, affect and loyalty. *Journal of business ethics*, 111, 541-549.

Vu, D. M., Ha, N. T., Ngo, T. V. N., Pham, H. T., & Duong, C. D. (2022). Environmental corporate social responsibility initiatives and green purchase intention: an application of the extended theory of planned behavior. *Social Responsibility Journal*, 18(8), 1627-1645.

Xu, Y., Du, J., Shahzad, F., & Li, X. (2021). Untying the influence of green brand authenticity on electronic word-of-mouth intention: a moderation - mediation model. *Frontiers in psychology*, 12, 724452.

Yin, C., Ma, H., Gong, Y., Chen, Q., & Zhang, Y. (2021). Environmental CSR and environmental citizenship behavior: The role of employees' environmental passion and empathy. *Journal of Cleaner Production*, 320, 128751.

Zhang, J., Islam, M. S., Jambulingam, M., Lim, W. M., & Kumar, S. (2024). Leveraging environmental corporate social responsibility to promote green purchases: The case of new energy vehicles in the era of sustainable development. *Journal of Cleaner Production*, 434, 139988.